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Summary. A general framework for solving and analyzing rapid 
equilibrium carrier models is given. The basis of this work is the 
demonstration that the solution of an arbitrarily complex model 
of this type can be written in the form 

jls~2 CoAI2F21 
oqF2] + 0~2F12 

where j ~ 2  is the unidirectional flux of the substrate S from side 
1 to side 2 of the membrane, Co is the total number of carriers and 
Alz, F12, F2j, cq and a2 are sums of terms which can be written 
down simply and directly from knowledge of the basic properties 
of the model. The above relation not only leads to a simple and 
convenient method for solving transport models of this type, but 
also provides a powerful algebraic tool for analyzing the proper- 
ties of individual models or groups of models. In this regard 
several examples of the potential utility of this formalism are 
given. The effects of "dead-end" inhibitors on rapid equilibrium 
carrier models are analyzed. Also the properties of carriers with 
one substrate binding site are studied in some detail. A parame- 
terization of j ~ 2  entirely in terms of experimentally measurable 
kinetic parameters as well as a set of generalized rejection crite- 
ria are derived for these models. Since the existence of a single 
substrate binding site is the only assumption made in these latter 
derivations, the results obtained necessarily apply to all rapid 
equilibrium models of this type, irrespective of complexity. 
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Introduction 

The behavior of many biomembrane transport sys- 
tems is dependent on the presence or absence of a 
number of interacting chemical species not all of 
which are necessarily transported. Primary active 
systems such as Na/K-ATPase are classic examples 
of this kind of complexity, but more recently sec- 
ondary active transporters involving multiple co- 
and/or countertransported activators as well as cat- 
alytic modifier sites have been described (see, for 

example, references 1 and 5). The kinetic behavior 
of these complex transporters is often difficult if not 
impossible to predict in an intuitive fashion even 
when considerable information regarding the details 
of the transport process (stoichiometry, order of 
binding, rate-limiting steps, etc.) is available. Ac- 
cordingly, it is essential to have rigorous mathemat- 
ical solutions to possible models of these systems to 
aid in the planning and interpretation of kinetic ex- 
periments designed to probe the details of the trans- 
port mechanism. Owing to the variety of trans- 
porters found in nature and to the number of 
different kinetic schemes potentially applicable to a 
given transport system, it is unlikely, however, that 
every model of possible biological interest will re- 
ceive a detailed theoretical treatment in the litera- 
ture. Indeed, rather than treating each of these 
models individually, a somewhat more general ap- 
proach to this problem would also seem to be more 
productive and desirable. 

The present paper deals with the derivation and 
application of such a general approach for solving 
and analyzing rapid equilibrium carrier models. The 
basis of this work is the demonstration that the flux 
equation of any model of this type can be written in 
the same simple mathematical form. The proof of 
this relation leads directly to a straightforward 
method for writing down the solution to an arbitrar- 
ily complex model. Of greater potential signifi- 
cance, however, is the fact that one can take advan- 
tage of the form of this general flux equation to 
determine many of the properties of an individual 
model or of families of related models in a relatively 
transparent way and without resorting to complete 
mathematical solutions. Moreover, this can often 
be done without specifying all of the details of the 
proposed transport mechanism, thus retaining con- 
siderable generality. Several examples of the poten- 
tial utility of this formalism are given. 
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General Solution to an Arbitrarily Complex 
Rapid Equilibrium Carrier Model 

ASSUMPTIONS 

The rapid equilibrium carrier model as treated here 
incorporates the following assumptions concerning 
the transport process and the experimental condi- 
tions under which fluxes are measured. 

1. Carrier Assumption 

The binding sites on the carrier for transported li- 
gands are only accessible from one side of the mem- 
brane at a time and the transmembrane transloca- 
tion of binding sites is a first-order process. It is also 
assumed that the binding sites for transported li- 
gands are translocated in an all-or-none manner, 
i.e., conformational changes of the carrier which 
result in the translocation of some but not all bind- 
ing sites for transported ligands are not allowed. 
Note that this does not exclude the translocation of 
partially loaded carrier species. 

2. Rapid Equilibrium Assumption 

The rate-limiting step in the transport process is the 
translocation of binding sites from one membrane 
face to the other; thus the transporters are in equi- 
librium with the ligands at the membrane faces. 

3. Steady-State Assumption 

The transporter has reached a steady state at the 
time of measurement, i.e., there is no net move- 
ment of transporter binding sites from one face of 
the membrane to the other. 

4. Conservation o f  Carriers 

The total number of carriers is constant and equal to 
Co. Note that this assumption does not exclude 
most of the obvious forms of carrier recruitment 
(e.g., activation of dormant carriers by the binding 
or dissociation of modifier ligands, membrane po- 
tentials, etc.). 

Since no assumptions regarding the energetics 
of the transport event are made, the treatment given 
here is equally applicable to active and passive 
transport systems. 

. . . .  N~, where NI + I and N2 + I are the total 
number of carrier species on sides 1 and 2, respec- 
tively, and C01 and (7o2 denote the unloaded forms of 
the carrier. Also let kg(2 and k~j be the first-order rate 
constants for the translocation events (Assumption 
1) defined by 

Cij ~ Cj2. (I) 

side 1 side 2 

Many of the rate constants defined by Eq. (1) will, 
in fact, be equal to zero, since only translocations 
between carrier species with the same complement 
of bound ligands are possible. 

In what follows it will be assumed that the car- 
rier species assigned to side 1 of the membrane (i.e., 
the Ci~) are those with binding site(s) for the sub- 
strate of interest exposed on side 1. In some cases 
the assignment of a given carrier species to one or 
to the other side of the membrane may be rather 
arbitrary (e.g., antiporters with substrate binding 
sites exposed simultaneously on both sides of the 
membrane). However, this does not pose a serious 
problem. Once the assignment, however arbitrary, 
of one carrier species to side 1 or 2 of the membrane 
has been made, the assignment of all other carrier 
species will be uniquely determined according to 
whether or not a translocation event is required to 
reach it. The application of the results of this paper 
requires only that these assignments be treated con- 
sistently. 

GENERAL SOLUTION 

The general solution to an arbitrarily complex rapid 
equilibrium model follows directly from the as- 
sumptions and nomenclature introduced above. 
(The solution of a specific example, which follows 
the same sequence as the more general solution pre- 
sented below, is given in the Appendix. This Ap- 
pendix is included both to illustrate the utility of the 
method derived here for solving rapid equilibrium 
carrier models and to complement the more ab- 
stract treatment below with a more concrete exam- 
ple.) The rapid equilibrium assumption (Assump- 
tion 2) requires that all of the carrier species C;n are 
in chemical equilibrium with the ligands at the mem- 
brane faces. Thus each is related to Co, by an equa- 
tion of the form 

Cin = yinCo~ (2) 

NOMENCLATURE 

Let the various carrier species on side n of the 
membrane be denoted by Ci,. Here i = 0, 1, 2, 

where yil is simply the product of the concentra- 
tions of the various ligands bound to Cin divided by 
their respective dissociation constants (see Appen- 
dix for specific examples). The total number of car- 
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tiers on side n of the membrane can then be written 
as  

E Cin = Con E ~/in = Con an 
i i 

where 

an = E ~in (3) 
i 

and the sum ~]i is over all i = 0, 1, 2 . . . . .  Am. The 
total number of carriers Co thus has the form 

Co ~- OQCo I q- a2C02. (4) 

From the steady-state assumption (Assumption 
3) one has that the total number of transporters 
moving from side 1 to side 2 of the membrane is 
equal to that moving from side 2 to side 1, or in 
mathematical terms that 

E<'2c,, g " = k21Cj2 (5) 
/j t~ 

where the sum E(i is over all i = 0, 1 . . . . .  N~ , j  = 
0, 1 . . . . .  N2 for which k];2, k~l :~ 0, i.e., over all 
mobile species. Substituting Eq. (2) into Eq. (5) 
yields 

FI2Col = F21(7O2 (6) 

where 

FI2 ~kiJ2]/il and F21 ~] ij = = k21"Yj2. 
ij ij 

Equations (4) and (6) can now be solved to give the 
following expressions for C0j and C02. 

F21 Co 
Coj = 

alF21 + a~Fj2 

F12Co 
and C02 = 

alE21 q- azF12" 

The unidirectional flux of substrate S from side 
1 to side 2 of the membrane is given by 

= E *  
q 

where the sum ~* is over all mobile species with 
bound substrate, and nil is the number of translo- 
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cared substrate molecules on C;~. Substituting again 
for Cil from Eq. (2) one finds that Eq. (9) can be 
rewritten as 

j 1--+2 s = A12Col (10) 

where 

AI2 E *  /J = nilkl2yil. (11) 
ij 

Combining Eqs. (8) and (10) yields 

j l ~ 2  = CoAI2F21 . (12) 
S alF21 q_ 0r 

The corresponding expression for j2-,1 is given sim- 
ply by reversing the roles of the subscripts 1 and 2 in 
Eqs. (11) and (12). 

Equation (12) gives the general solution to an 
arbitrarily complex rapid equilibrium carrier model. 
In order to write down the solution to a particular 
model one need only substitute the expressions for 
oq, a2, F12, F21 and Al2 obtained using their defini- 
tions (Eqs. 3, 7, and 1 1; see Appendix for specific 
example). Several authors have previously noted 
that the solutions of certain less general rapid equi- 
librium carrier models can be cast in the form of Eq. 
(12) [3, 4, 8-10]. 

D e a d - E n d  I n h i b i t o r s  

As a simple example of the way in which Eq. (12) 
can be used to determine certain properties of trans- 
port models without resorting to complete mathe- 
matical solutions, consider the case of a rapid equi- 

(7) librium carrier model with a single binding site for a 
"dead-end" inhibitor, 1, i.e., an inhibitor whose 
binding renders the carrier immobile. Assume also 
that I is present only on side 1 of the membrane at 
concentration 11. For the purposes of this analysis it 
is not necessary to specify the mode of inhibition by 
I (competitive, noncompetitive, etc.). Since A 12, FI~ 
and F2, are sums over mobile species only (cf. Eqs. 
7 and 11), they are necessarily independent of I1. 

(8) Also, since there is a single binding site for I, al and 
a2 must be linear functions of I1. Again it is not 
necessary to specify whether I binds to all carrier 
species or only to a subset of carrier species. It 
follows from Eq. (12) that j}-+2 has the form B/(C + 
DIO where B, C and D are expressions which are 

(9) independent of I1. Thus for inhibitors of the rather 
general class specified above, a Dixon plot of Jza" ,~--,2s 
vs. I1 will necessarily be linear. Likewise a Hill plot 

_ _  j 1--->2 of log[J~s72/(Jls--'2 J~72)] vs. log I1, where sz and 
1--+2 Js are fluxes in the presence and absence ofinhib- 
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Table 1. Expressions for zero-trans (zt), infinite-trans (it) and 
equilibrium exchange (ee) kinetic constants for the rapid equilib- 
rium carrier model with a single substrate binding site (see text 
for details) 

CoF'[zF~I 
V~'~ - o~'F~i + a~F]'2 

or + a~Fi2 
K~tl a]'F~l + a;_F'~2 

. _ CoF]'zF'~I 
Vi~l o~'F~, + o~F~' 2 

Ki~. I _ a]F~l + olaF'2 

C,,F]':F~I 
V~s~ - o~'F~l + olaF"2 

K}] = Fh(c~]'F'~l + a~F~'z) 

F[2F~I 
R 

F;,F]'2 

itor, respectively, will also be linear with slope one. 
The generalization of this analysis to multiple inhib- 
itor binding sites and other types of inhibitor behav- 
ior is obvious. 

It is worth stressing that results similar to those 
derived in the preceding paragraph are well-known 
in enzymatic systems [7]. What is, however, novel 
in the above treatment is first, the application to 
transport systems, and second, the ease and gener- 
ality with which these results were obtained. Note 
also the clear relationship between the assumptions 
made and the predictions derived. A more general 
example which further illustrates the potential util- 
ity of Eq. (12) follows. 

Models with a Single Substrate Binding Site 

Equation (12) reduces to an interesting and useful 
form when the carrier possesses a single substrate 
binding site. This result is derived below and used 
to determine a number of properties of this family of 
transport models. 

GENERAL SOLUTION FOR MODELS 
WITH A SINGLE SUBSTRATE BINDING SITE 

When the transporter has a single binding site for 
the transported substrate, S, it can be seen directly 
from Eqs. (3) and (7) that a ,  and Fnm c a n  be written 
in the form 

t t t  
an  = OLn -1- SnOln (13) 

and 

Fnm = F'm + SnF"m (14) 

where S, is the concentration of S on side n of the 
t m e m b r a n e  and  oG,' o~n," F n m ,  F ~ m  are  expressions 

which are independent of both Sl and $2. It can also 
be shown from Eqs. (7), (11) and (14) that 

Anm = SnF~m. (15) 

Substituting Eqs. (13), (14) and (15) into Eq. (12) 
and rearranging yields 

j ~ 2  = Co FPI'2F21 S 1 

alE21 + azF12 
vl ! tv CoFI2(Fzj + S2F2OSj 

[(c~iFh + o:~F~2) + Sl(Ot]'F:~l 
v tt  t !  ! + o~F]'2) + Sz(a1F21 + oQFI2) 

I t  t l  ?l ?l 
+ S I S 2 ( o l l F 2 1  + a 2 F I 2 ) ]  (16) 

ZERO-TRANS, 1NFIN ITE-TRANS 
AND GENERALIZED EQUILIBRIUM 
EXCHANGE EXPERIMENTAL CONDITIONS 

Defining zero-trans conditions by $2 = 0 and infi- 
nite-trans conditions by S 2 ~ oo it can be seen from 
Eq. (16) that j}-,2 has Michaelis-Menten form in 
each case. Expressions for the resulting zero-trans 
and infinite-trans Michaelis constants and maxi- 
mum velocities are given in Table 1. 

Carrying out some straightforward algebraic 
manipulation with the aid of Table 1 it can be shown 
that Eq. (I6) can be rewritten in the form 

VZt ~ it ~ it 
j / ~ 2 =  SIIx $201 + Vs,SIS2 (17) 

zt it it it Ks, Ks, + Ks~S1 + Ks,S2 + SIS2 

Thus under a given set of experimental circum- 
stances (viz., all a ' ,  a~, F;,n and F"m fixed) the eight 
kinetic constants derived from zero-trans and infi- 
nite-trans procedures are sufficient to completely 
determine the behavior of the model, i.e., to predict 
the flux rate in either direction under any substrate 
conditions. As discussed in more detail below, only 
five of these eight kinetic constants are actually in- 
dependent of one another. 

It is useful for what follows to define a set of 
generalized equilibrium exchange conditions which 
are applicable to both active and passive transport 
systems as well as to situations where ligands which 
are co- and/or countertransported with the sub- 
strate are not at electrochemical equilibrium across 
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the membrane. Generalized equilibrium exchange 
conditions are defined here by the requirement that 
there is no net substrate flux across the membrane, 
i.e., that j~-~2 /2---~1 = Js  . By applying this condition to 
Eq. (16) it can be shown that the constraint 

SI F[zF~I  
52 F~IF'(2 (18) 

is both a necessary and sufficient condition for gen- 
eralized equilibrium exchange conditions in the 
rapid equilibrium carrier model with a single sub- 
strate binding site. In the remainder of the paper the 
quantity on the right-hand-side of Eq. (18) is re- 
ferred to as R (cf. Table 1). It is worth stressing that 
R is an experimentally measurable constant; under 
a given set of experimental conditions (i.e., fixed 

t t! ? tt 
otn, a n ,  Fn  .... Fnm)  o n e  n e e d  only d e t e r m i n e  sub -  
strate concentrations S~ and $2, at which ,1-~2 d S ~-- 
j2---,l s , then R is given by R = S~/$2. Furthermore, it 
follows from the above discussion that once R has 
been determined for a given set of experimental 
conditions then j/-->2 necessarily equals j ~ l  for all 
St and $2 for which S~/$2 = R.  This latter observa- 
tion is an important prediction of the rapid equilib- 
rium carrier model with a single substrate binding 
site. 

The form of j}--,2 under generalized equilibrium 
exchange conditions can be obtained by substituting 
Eq. (18) directly into Eq. (16) (the algebra can be 
simplified considerably by using the relation Fj2F~ 
= F{2F21 which can be proven from Eqs. (14) and 
(18) for generalized equilibrium exchange condi- 
tions). The result has Michaelis-Menten form with 
kinetic constants V}' I and K~s~ " given in Table 1. 

REJECTION CRITERIA 

As illustrated by Eq. (17), for the subset of rapid 
equilibrium carrier models with one substrate bind- 
ing site, the eight kinetic constants derived from 
zero-trans and infinite-trans experimental proce- 
dures are sufficient to completely characterize the 
model for a given set of experimental conditions. In 
fact, only five of these constants are independent of 
one another since the relationships referred to as 
Eqs. (RCI), (RC2) and (RC3) in Table 2 can be 
proven directly from Table 1. It is also clear from 
Eq. (17) that the additional kinetic constants de- 
rived from generalized equilibrium exchange condi- 
tions (or for that matter from any experimental con- 
ditions) must necessarily be expressible in terms of 
zero-trans and infinite-trans parameters. Thus these 
conditions give rise to four additional relationships 
referred to as Eqs. RC4-RC7 in Table 2. Finally, 
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Table 2. Rejection criteria for the rapid equilibrium carrier 
model with a single substrate binding site (see text) 

Vi'sl = V~2 (RCI) 
zt it = K Z t  K i t  Ks,Ks2 s2 Sl (RC2) 
it 2t :t VsiKsl V:J, Vs, 

KI~,V:s', 1 + V~!, VI~, (RC3) 

VZst I VcJ2 K:i~ ( R C 4 )  

K~ ,~t K~ 2 K:~ 
V~ = V~ (RC5) 

V~ = v" s2 (RC6) 

V~'r I _ Vs': (RC7) 
K~Y I K~rl 

R - K~i'i _ V~'2K~', 
,,e K:' V J (RC8) Ks2 s2 s] 

the experimentally measurable constant R can also 
be expressed in terms of various kinetic constants 
(Eq. RC8). 

The eight relationships given in Table 2 repre- 
sent a set of mathematical constraints on the com- 
monly determined experimental parameters listed 
in Table 1. These constraints arise directly from the 
form of Eq. (16) and thus provide a set of rejection 
criteria for the rapid equilibrium carrier model with 
a single substrate binding site. 

Concluding Remarks 

This paper presents a general framework for solving 
and analyzing rapid equilibrium carrier models. It is 
demonstrated that the flux equation of any model of 
this type can be written in a simple mathematical 
form (Eq. 12) and that this relation leads directly to 
a straightforward method for writing down the solu- 
tion to an arbitrarily complex model. The use of 
graph theoretic techniques [7] was unnecessary in 
these derivations owing to the mathematical simpli- 
fications arising from the rapid equilibrium assump- 
tion. 

It is also emphasized that the general form of 
the flux equation for rapid equilibrium carrier 
models established here (Eq. 12) can be used to 
determine many properties of individual models or 
groups of models without resorting to complete 
mathematical analyses and without specifying all of 
the details of the proposed transport mechanism. 
This ability potentially allows one to screen models 
for certain types of behavior and/or to introduce 
modifications indicated by experimental observa- 
tions in a relatively straightforward way. The utility 
of this procedure was demonstrated by analyzing 
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the kinetic effects of dead-end inhibitors and by 
characterizing the kinetic behavior of rapid equilib- 
rium models with a single substrate binding site. In 
each case assumptions regarding only the interac- 
tion of the ligand of interest with the carrier were 
made, thus the results derived were otherwise com- 
pletely general. In the latter case it was possible to 
derive a general rate equation (Eq. 17) and a set of 
rejection criteria (Table 2) which are similar to 
those found for several much simpler models [2, 6, 
9]. 
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while typing the manuscript and the Medical Research Council of 
Canada for financial support (Grant MA-8028). 
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Appendix 

The solution to a specific example is given here in order to dem- 
onstrate the use of Eqs. (3), (7), (11) and (12). The kinetic dia- 
gram for the model under consideration is shown in the Figure. 
This model incorporates a number of features for illustrative 
purposes and is not intended to represent any particular experi- 
mental system. The free carriers on sides 1 and 2 of the mem- 
brane are denoted by C~ and C2, respectively; neither CI nor C2 is 
mobile. M is a nontransported modifier whose binding site is on 
side 1 of the membrane. M can bind to both C~ and C2 and this 
binding renders them mobile. The transported species are X, Y 
and Z with X and Y cotransported in exchange for Z. R is a dead- 
end inhibitor which can only bind to CM~ from side 1. The vari- 
ous binding constants are defined below. These equations are 
equivalent to Eq. (2) in the body of the paper. 

Y, X,  
CXY, - - -  C, 

Kxr. Kx. 
Sn 

CX, = ~ C, 

Z2 Yt Xi 
Cxrz, Kxrzl Kxrl Kx, Cl 

ZI Y2 X2 
CxYz2 Kxrz2 Kxr2 Kx2 C2 

Ml 
CMI = ~ C, CMz 

and 

= c2 

CMR I 

RI ~'~ g12 
CM I �9 CM 2 

MI <-- ~ g,I MI <-- ~ 

CI C 2 

CXI CX 2 

Y' '~  t, 2 ~f-~Y2 
CXYI C X Y2 

~ Z2 f21 

hl2 
CXYZ I " CXYZ2 

h21 

R1 M1 Fig. Schematic representation of the rapid equilibrium carrier 
CMRI KMRI KMI C1. model solved in the Appendix. See text for details 
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Thus (cf. Eq. 3) 

MI RIMI XI YIXI 
a, = 1 + ~ +  K M n , K M m + - ~ X L + ~  + 

Z2 YIXI 

KxrzL Kxv, Kx, 

and 

M, X2 Y,X, Zt Y, X2 
a2 = 1 + , '77-+ 7 +  ~ + Kxrz:K,>_Kr~_ AM: r,A~ *XXy:'XX2 

F n  and Fz, are given by similar sums over mobile species 
(cf. Eq. 7). Thus 

Mj Y1X1 
F12 = g 1 2 ~ + f 1 2 ~ +  h,z 

Z2Y, Xj 
Kzvx, Kxv, Kx, 

and 

M ,  ~ X ~  
F2, = g2, ~M2 ~ + A, ~ + h2, 

Z, Y,_X2 
Kzvx2Kxv2Kx2 

The complete solution to the model (Eq. 12) now requires only 
evaluation of  A,_, (Eq. I1). In order to find A,_~ one must first 
specify the substrate. If, for example, X is the substrate, then 

Y1XI 
A,2 = f,2 ~ + hi2 

Z2 YIX1 
Kxvz, Kxr, Kx, 

Alternatively, if X is the substrate and X and Y are the same 
chemical species then 

.,z. 2Xi A12 = 2ftz X~ + Z 
Kxx,Kxj , - , u 2  Kxxz, Kxx,Kx, 


